Dynamics of the Sixth Painlevé Equation
نویسندگان
چکیده
— The sixth Painlevé equation is hiding extremely rich geometric structures behind its outward appearance. In this article, we give a complete picture of its dynamical nature based on the Riemann-Hilbert approach recently developed by the authors and using various techniques from algebraic geometry. A large part of the contents can be extended to Garnier systems, while this article is restricted to the original sixth Painlevé equation. Résumé (Dynamique de la sixième équation de Painlevé). — Malgré une apparente simplicité, l’équation de Painlevé VI cache des structures géométriques très riches. Nous en décrivons les aspects dynamiques en nous appuyant sur l’approche de type RiemannHilbert récemment développée par les auteurs et en utilisant différentes techniques issues de la géométrie algébrique. Une grande partie de ces résultats peut être étendue aux systèmes de Garnier. Toutefois, dans cet article, nous nous limitons au cas de l’équation de Painlevé VI.
منابع مشابه
On the asymptotics of the real solutions to the general sixth Painlevé equation
The mathematical and physical significance of the six Painlevé transcendents has been well established. In the last 20 to 30 years, many mathematicians have spent dramatic effort on studying the properties of these transcendents. Although it is the most complicated one among the six Painlevé equations, there have been many results about the sixth Painlevé transcendent. In fact, the asymptotics ...
متن کاملHeun Equation and Painlevé Equation
We relate two parameter solutions of the sixth Painlevé equation and finite-gap solutions of the Heun equation by considering monodromy on a certain class of Fuchsian differential equations. In the appendix, we present formulae on differentials of elliptic modular functions, and obtain the ellitic form of the sixth Painlevé equation directly.
متن کاملElliptic Integrable Systems Heun Equation and Painlevé Equation
We relate two parameter solutions of the sixth Painlevé equation and finitegap solutions of the Heun equation by considering monodromy on a certain class of Fuchsian differential equations. In the appendix, we present formulae on differentials of elliptic modular functions, and obtain the ellitic form of the sixth Painlevé equation directly.
متن کاملOn Algebraic Solutions to Painlevé
Classifying all algebraic solutions to the sixth Painlevé equation is an important unsettled problem. We announce some new results which might bring a new insight into this subject. The main results consist of the rationality of parameters, trigonometric Diophantine conditions, and what the author calls the Tetrahedral Theorem regarding the absence of algebraic solutions in certain situations. ...
متن کاملJa n 20 06 The sixth Painlevé equation arising from D ( 1 ) 4 hierarchy
The sixth Painlevé equation arises from a Drinfel’d-Sokolov hierarchy of type D (1) 4 by similarity reduction. 2000 Mathematics Subject Classification: 34M55, 17B80, 37K10. Introduction The Drinfel’d-Sokolov hierarchies are extensions of the KdV (or mKdV) hierarchy [DS]. It is known that their similarity reductions imply several Painlevé equations [AS, KK1, NY1]. For the sixth Painlevé equation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005